

PCK1 Antibody

Rabbit mAb Catalog # AP91962

Product Information

Application WB, IHC
Primary Accession P35558
Reactivity Human
Clonality Monoclonal

Other Names GTP; PCK1; PEP carboxykinase; PEPCK1; PEPCKC;

IsotypeRabbit IgGHostRabbitCalculated MW69195

Additional Information

Dilution WB 1:1000~1:5000 IHC 1:50~1:200

Purification Affinity-chromatography

Immunogen A synthesized peptide derived from human PCK1

Description Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate

(PEP), the rate-limiting step in the metabolic pathway that produces glucose

from lactate and other precursors derived from the citric acid cycle.

Storage Condition and Buffer Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium

azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term.

Avoid freeze / thaw cycle.

Protein Information

Name PCK1 {ECO:0000303 | PubMed:8490617, ECO:0000312 | HGNC:HGNC:8724}

Function Cytosolic phosphoenolpyruvate carboxykinase that catalyzes the reversible

decarboxylation and phosphorylation of oxaloacetate (OAA) and acts as the

rate-limiting enzyme in gluconeogenesis (PubMed: 24863970,

PubMed: <u>26971250</u>, PubMed: <u>28216384</u>, PubMed: <u>30193097</u>). Regulates cataplerosis and anaplerosis, the processes that control the levels of metabolic intermediates in the citric acid cycle (PubMed: <u>24863970</u>,

PubMed:<u>26971250</u>, PubMed:<u>28216384</u>, PubMed:<u>30193097</u>). At low glucose

levels, it catalyzes the cataplerotic conversion of oxaloacetate to

phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle (PubMed:30193097). At high glucose levels, it catalyzes the

anaplerotic conversion of phosphoenolpyruvate to oxaloacetate

(PubMed:30193097). Acts as a regulator of formation and maintenance of memory CD8(+) T-cells: up- regulated in these cells, where it generates phosphoenolpyruvate, via gluconeogenesis (By similarity). The resultant phosphoenolpyruvate flows to glycogen and pentose phosphate pathway,

which is essential for memory CD8(+) T-cells homeostasis (By similarity). In addition to the phosphoenolpyruvate carboxykinase activity, also acts as a protein kinase when phosphorylated at Ser-90: phosphorylation at Ser-90 by AKT1 reduces the binding affinity to oxaloacetate and promotes an atypical serine protein kinase activity using GTP as donor (PubMed:32322062). The protein kinase activity regulates lipogenesis: upon phosphorylation at Ser-90, translocates to the endoplasmic reticulum and catalyzes phosphorylation of INSIG proteins (INSIG1 and INSIG2), thereby disrupting the interaction between INSIG proteins and SCAP and promoting nuclear translocation of SREBP proteins (SREBF1/SREBP1 or SREBF2/SREBP2) and subsequent transcription of downstream lipogenesis- related genes (PubMed:32322062).

Cellular Location

Cytoplasm, cytosol. Endoplasmic reticulum Note=Phosphorylation at Ser-90 promotes translocation to the endoplasmic reticulum.

Tissue Location

Major sites of expression are liver, kidney and adipocytes.

Images

Western blot analysis of PCK1 expression in Human fetal kidney lysate.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.