

ATP5A1 Antibody

Rabbit mAb Catalog # AP91205

Product Information

Application WB, IHC, IF, FC, ICC, IHF

Primary Accession <u>P25705</u>

Reactivity Rat, Human, Mouse

Clonality Monoclonal

Other Names Atp5a1; ATP5AL2; ATPM; hATP1; HEL-S-123m; MC5DN4; MOM2;

IsotypeRabbit IgGHostRabbitCalculated MW59751

Additional Information

Dilution WB 1:500~1:2000 IHC 1:50~1:200 ICC/IF 1:50~1:200 FC 1:50

Purification Affinity-chromatography

Immunogen A synthesized peptide derived from human ATP5A1

Description Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V)

produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral

stalk.

Storage Condition and Buffer Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium

azide and 50% glycerol. Store at +4°C short term. Store at -20°C long term.

Avoid freeze / thaw cycle.

Protein Information

Name ATP5F1A (HGNC:823)

Function Subunit alpha, of the mitochondrial membrane ATP synthase complex

(F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core -

and a membrane F(1) domain - the membrane proton channel

(PubMed:<u>37244256</u>). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:<u>37244256</u>). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the catalytic subunit

beta (ATP5F1B), forms the catalytic core in the F(1) domain

(PubMed:<u>37244256</u>). Subunit alpha does not bear the catalytic high- affinity ATP-binding sites (Probable). Binds the bacterial siderophore enterobactin and can promote mitochondrial accumulation of enterobactin-derived iron ions (PubMed:<u>30146159</u>).

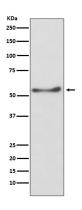
Cellular Location

Mitochondrion. Mitochondrion inner membrane

{ECO:0000250|UniProtKB:P19483}; Peripheral membrane protein

{ECO:0000250|UniProtKB:P19483}; Matrix side

{ECO:0000250 | UniProtKB:P19483}. Cell membrane; Peripheral membrane protein; Extracellular side. Note=Colocalizes with HRG on the cell surface of


T-cells (PubMed:19285951).

Tissue Location

Fetal lung, heart, liver, gut and kidney. Expressed at higher levels in the fetal

brain, retina and spinal cord

Images

Western blot analysis of ATP5A1 expression in HepG2 cell lysate;.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.