5 Lipoxygenase Rabbit mAb Catalog # AP79012 ### **Product Information** **Application** WB, IHC-P, IHC-F, IF, FC, ICC Primary Accession P09917 **Reactivity** Rat, Human, Mouse **Host** Rabbit **Clonality** Monoclonal Antibody **Isotype** IgG **Conjugate** Unconjugated **Immunogen** A synthesized peptide derived from human 5 Lipoxygenase **Purification** Affinity Chromatography Calculated MW 77983 ## **Additional Information** Gene ID 240 Other Names ALOX5 **Dilution** WB~~1/500-1/1000 IHC-P~~N/A IHC-F~~N/A IF~~1:50~200 FC~~1:10~50 ICC~~N/A Format Liquid in 10mM PBS, pH 7.4, 150mM sodium chloride, 0.05% BSA, 0.02% sodium azide and 50% glycerol. **Storage** Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles. #### **Protein Information** Name ALOX5 (HGNC:435) Synonyms LOG5 **Function** Catalyzes the oxygenation of arachidonate ((5Z,8Z,11Z,14Z)- eicosatetraenoate) to 5-hydroperoxyeicosatetraenoate (5-HPETE) followed by the dehydration to 5,6- epoxyeicosatetraenoate (Leukotriene A4/LTA4), the first two steps in the biosynthesis of leukotrienes, which are potent mediators of inflammation (PubMed:19022417, PubMed:21233389, PubMed:22516296, PubMed:23246375, PubMed:24282679, PubMed:24893149, PubMed:<u>31664810</u>, PubMed:<u>8615788</u>, PubMed:<u>8631361</u>). Also catalyzes the oxygenation of arachidonate into 8- hydroperoxyicosatetraenoate (8-HPETE) and 12- hydroperoxyicosatetraenoate (12-HPETE) (PubMed:<u>23246375</u>). Displays lipoxin synthase activity being able to convert (15S)-HETE into a conjugate tetraene (PubMed:<u>31664810</u>). Although arachidonate is the preferred substrate, this enzyme can also metabolize oxidized fatty acids derived from arachidonate such as (15S)-HETE, eicosapentaenoate (EPA) such as (18R)- and (18S)-HEPE or docosahexaenoate (DHA) which lead to the formation of specialized pro-resolving mediators (SPM) lipoxin and resolvins E and D respectively, therefore it participates in anti-inflammatory responses (PubMed:17114001, PubMed:21206090, PubMed:31664810, PubMed:32404334, PubMed:8615788). Oxidation of DHA directly inhibits endothelial cell proliferation and sprouting angiogenesis via peroxisome proliferator-activated receptor gamma (PPARgamma) (By similarity). It does not catalyze the oxygenation of linoleic acid and does not convert (5S)-HETE to lipoxin isomers (PubMed:31664810). In addition to inflammatory processes, it participates in dendritic cell migration, wound healing through an antioxidant mechanism based on heme oxygenase-1 (HO-1) regulation expression, monocyte adhesion to the endothelium via ITGAM expression on monocytes (By similarity). Moreover, it helps establish an adaptive humoral immunity by regulating primary resting B cells and follicular helper T cells and participates in the CD40-induced production of reactive oxygen species (ROS) after CD40 ligation in B cells through interaction with PIK3R1 that bridges ALOX5 with CD40 (PubMed:21200133). May also play a role in glucose homeostasis, regulation of insulin secretion and palmitic acid-induced insulin resistance via AMPK (By similarity). Can regulate bone mineralization and fat cell differentiation increases in induced pluripotent stem cells (By similarity). #### **Cellular Location** Cytoplasm {ECO:0000250 | UniProtKB:P48999, ECO:0000269 | PubMed:18978352}. Nucleus matrix. Nucleus membrane; Peripheral membrane protein. Cytoplasm, perinuclear region. Cytoplasm, cytosol. Nucleus envelope. Nucleus intermembrane space. Note=Shuttles between cytoplasm and nucleus (PubMed:19233132). Found exclusively in the nucleus, when phosphorylated on Ser-272 (PubMed:18978352). Calcium between cytoplasm and nucleus (PubMed:19233132). Found exclusively in th nucleus, when phosphorylated on Ser-272 (PubMed:18978352). Calcium binding promotes translocation from the cytosol and the nuclear matrix to the nuclear envelope and membrane association (PubMed:16275640, PubMed:19233132, PubMed:3118366, PubMed:8245774). ## **Images** Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.