

COX6B1 Rabbit mAb

Catalog # AP78773

Product Information

Application WB, IHC-P, IF, ICC

Primary Accession P14854
Reactivity Human
Rabbit

Clonality Monoclonal Antibody

Isotype IgG

Conjugate Unconjugated

Immunogen A synthesized peptide derived from human COX6B1

Purification Affinity Chromatography

Calculated MW 10192

Additional Information

Gene ID 1340

Other Names COX6B1

Dilution WB~~1/500-1/1000 IHC-P~~N/A IF~~1:50~200 ICC~~N/A

Format Liquid in 10mM PBS, pH 7.4, 150mM sodium chloride, 0.05% BSA, 0.02%

sodium azide and 50% glycerol.

Storage Store at 4°C short term. Aliquot and store at -20°C long term. Avoid

freeze/thaw cycles.

Protein Information

Name COX6B1

Synonyms COX6B

Function Component of the cytochrome c oxidase, the last enzyme in the

mitochondrial electron transport chain which drives oxidative

phosphorylation. The respiratory chain contains 3 multisubunit complexes

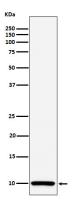
succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c

oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from

NADH and succinate to molecular oxygen, creating an electrochemical

gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating

from reduced cytochrome c in the intermembrane space (IMS) are


transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A

of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.

Cellular Location

Mitochondrion inner membrane; Peripheral membrane protein; Intermembrane side

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.