

SMARCC1 Rabbit mAb

Catalog # AP77962

Product Information

Application WB, IF, FC, ICC, IP

Primary Accession

Reactivity
Rat, Human
Rabbit

Clonality Monoclonal Antibody

Isotype IgG

Conjugate Unconjugated

Immunogen A synthesized peptide derived from human SMARCC1/BAF155

Purification Affinity Chromatography

Calculated MW 122867

Additional Information

Gene ID 6599

Other Names SMARCC1

Dilution WB~~1/500-1/1000 IF~~1:50~200 FC~~1:10~50 ICC~~N/A IP~~N/A

Format Liquid in 10mM PBS, pH 7.4, 150mM sodium chloride, 0.05% BSA, 0.02%

sodium azide and 50% glycerol.

Storage Store at 4°C short term. Aliquot and store at -20°C long term. Avoid

freeze/thaw cycles.

Protein Information

Name SMARCC1 (HGNC:11104)

Synonyms BAF155

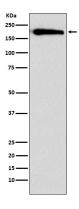
Function Involved in transcriptional activation and repression of select genes by

chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. May stimulate the ATPase

activity of the catalytic subunit of the complex (PubMed: 10078207,

PubMed:<u>29374058</u>). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to

postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity).


Cellular Location

Nucleus. Cytoplasm

Tissue Location

Expressed in brain, heart, muscle, placenta, lung, liver, muscle, kidney and pancreas

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.