

Caspase 8 Rabbit mAb

Catalog # AP76843

Product Information

Application	WB
Primary Accession	Q14790
Reactivity	Hamster
Host	Rabbit
Clonality	Monoclonal Antibody
Calculated MW	55391

Additional Information

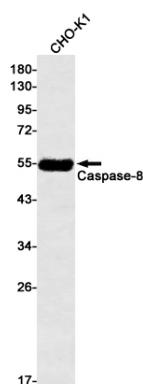
Gene ID	841
Other Names	CASP8
Dilution	WB~1/500-1/1000
Format	50mM Tris-Glycine(pH 7.4), 0.15M NaCl, 40%Glycerol, 0.01% sodium azide and 0.05% BSA.
Storage	Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

Protein Information

Name	CASP8 {ECO:0000303 PubMed:9931493, ECO:0000312 HGNC:HGNC:1509}
Function	Thiol protease that plays a key role in programmed cell death by acting as a molecular switch for apoptosis, necroptosis and pyroptosis, and is required to prevent tissue damage during embryonic development and adulthood (PubMed: 23516580 , PubMed: 35338844 , PubMed: 35446120 , PubMed: 8681376 , PubMed: 8681377 , PubMed: 8962078 , PubMed: 9006941 , PubMed: 9184224). Initiator protease that induces extrinsic apoptosis by mediating cleavage and activation of effector caspases responsible for FAS/CD95-mediated and TNFRSF1A-induced cell death (PubMed: 23516580 , PubMed: 35338844 , PubMed: 35446120 , PubMed: 8681376 , PubMed: 8681377 , PubMed: 8962078 , PubMed: 9006941 , PubMed: 9184224). Cleaves and activates effector caspases CASP3, CASP4, CASP6, CASP7, CASP9 and CASP10 (PubMed: 16916640 , PubMed: 8962078 , PubMed: 9006941). Binding to the adapter molecule FADD recruits it to either receptor FAS/TNFRSF6 or TNFRSF1A (PubMed: 8681376 , PubMed: 8681377). The resulting aggregate called the death-inducing signaling complex (DISC) performs CASP8 proteolytic activation (PubMed: 9184224). The active dimeric enzyme is then liberated from the DISC and free to activate downstream apoptotic proteases (PubMed: 9184224). Proteolytic fragments of the N-terminal propeptide

(termed CAP3, CAP5 and CAP6) are likely retained in the DISC (PubMed:[9184224](#)). Also cleaves and activates BID, thereby promoting cytochrome C release from mitochondria (By similarity). In addition to extrinsic apoptosis, also acts as a negative regulator of necroptosis: acts by cleaving RIPK1 at 'Asp-324', which is crucial to inhibit RIPK1 kinase activity, limiting TNF-induced apoptosis, necroptosis and inflammatory response (PubMed:[31827280](#), PubMed:[31827281](#)). Also able to initiate pyroptosis by mediating cleavage and activation of gasdermin-C and -D (GSDMC and GSDMD, respectively): gasdermin cleavage promotes release of the N-terminal moiety that binds to membranes and forms pores, triggering pyroptosis (PubMed:[32929201](#), PubMed:[34012073](#)). Initiates pyroptosis following inactivation of MAP3K7/TAK1 (By similarity). Also acts as a regulator of innate immunity by mediating cleavage and inactivation of N4BP1 downstream of TLR3 or TLR4, thereby promoting cytokine production (By similarity). May participate in the Granzyme B (GZMB) cell death pathways (PubMed:[8755496](#)). Cleaves PARP1 and PARP2 (PubMed:[8681376](#)). Independent of its protease activity, promotes cell migration following phosphorylation at Tyr-380 (PubMed:[18216014](#), PubMed:[27109099](#)).

Cellular Location


Cytoplasm {ECO:0000250 | UniProtKB:Q9JHX4}. Nucleus {ECO:0000250 | UniProtKB:Q9JHX4}. Cell projection, lamellipodium. Note=Recruitment to lamellipodia of migrating cells is enhanced by phosphorylation at Tyr-380

Tissue Location

Isoform 1, isoform 5 and isoform 7 are expressed in a wide variety of tissues. Highest expression in peripheral blood leukocytes, spleen, thymus and liver. Barely detectable in brain, testis and skeletal muscle

Images

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.