

MCM4 (phospho Ser54) Polyclonal Antibody

Catalog # AP67286

Product Information

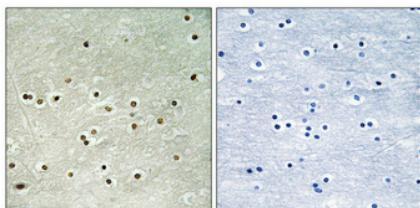
Application	WB, IHC-P, IF, ICC, E
Primary Accession	P33991
Reactivity	Human, Mouse, Monkey
Host	Rabbit
Clonality	Polyclonal
Calculated MW	96558

Additional Information

Gene ID	4173
Other Names	MCM4; CDC21; DNA replication licensing factor MCM4; CDC21 homolog; P1-CDC21
Dilution	WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/20000. Not yet tested in other applications. IHC-P~~N/A IF~~1:50~200 ICC~~N/A E~~N/A
Format	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.
Storage Conditions	-20°C

Protein Information

Name	MCM4 (HGNC:6947)
Synonyms	CDC21
Function	Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed: 16899510 , PubMed: 25661590 , PubMed: 32453425 , PubMed: 34694004 , PubMed: 34700328 , PubMed: 35585232 , PubMed: 9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed: 16899510 , PubMed: 25661590 , PubMed: 32453425 , PubMed: 9305914).


Cellular Location

Nucleus. Chromosome. Note=Associated with chromatin before the formation of nuclei and detaches from it as DNA replication progresses.

Background

Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity.

Images

Immunohistochemical analysis of paraffin-embedded Human brain. Antibody was diluted at 1:100(4°,overnight). High-pressure and temperature Tris-EDTA,pH8.0 was used for antigen retrieval. Negetive contrl (right) obtained from antibody was pre-absorbed by immunogen peptide.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.