

RPA70 Antibody

Purified Mouse Monoclonal Antibody (Mab) Catalog # AP52807

Product Information

Application WB, ICC, IP **Primary Accession** P27694

Reactivity Human, Mouse

Host Mouse
Clonality Monoclonal
Isotype IgG2a
Calculated MW 68138

Additional Information

Gene ID 6117

Other Names Dmrpa1;Drosophila Replication Protein A;DRPA;DSSB;HSSB;Human single

stranded DNA binding protein; MST075; MSTP075; p70; REPA

1;REPA1;Replication factor A;Replication factor A protein 1;Replication protein A 70 kDa DNA-binding subunit;Replication protein A 70kDa DNA binding subunit;Replication protein A1 (70kD);Replication protein A1 (70kD); Replication protein A1 70kDa;Replication protein A1;RF A;RF-A protein 1;RFA;RFA1_HUMAN; RP A;RP-A p70;RPA 1;RPA 70;RPA;RPA1;Single stranded binding protein 70;Single stranded DNA binding protein;Single-stranded

DNA-binding protein; Ssb70.

Dilution WB~~1:1000 ICC~~1:100 IP~~1:500

Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide, pH

7.3.

Storage Store at 4°C short term. Aliquot and store at -20°C long term. Avoid

freeze/thaw cycles.

Protein Information

Name RPA1

Synonyms REPA1, RPA70

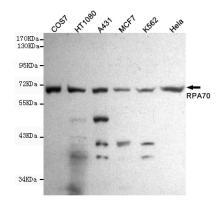
Function As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds

and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism (PubMed:17596542, PubMed:27723717, PubMed:27723720). Thereby, it plays an essential role both in DNA replication and the cellular

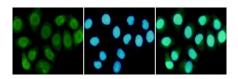
response to DNA damage (PubMed: 9430682). In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP activates the ATR kinase a master regulator of the DNA damage response (PubMed:24332808). It is required for the recruitment of the DNA double-strand break repair factors RAD51 and RAD52 to chromatin in response to DNA damage (PubMed:17765923). Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair (PubMed:7697716). Also plays a role in base excision repair (BER) probably through interaction with UNG (PubMed: 9765279). Also recruits SMARCAL1/HARP, which is involved in replication fork restart, to sites of DNA damage. Plays a role in telomere maintenance (PubMed: 17959650, PubMed:34767620). As part of the alternative replication protein A complex, aRPA, binds single-stranded DNA and probably plays a role in DNA repair. Compared to the RPA2- containing, canonical RPA complex, may not support chromosomal DNA replication and cell cycle progression through S-phase. The aRPA may not promote efficient priming by DNA polymerase alpha but could support DNA synthesis by polymerase delta in presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange (PubMed: 19996105). RPA stimulates 5'-3' helicase activity of the BRIP1/FANCJ (PubMed: 17596542).

Cellular Location

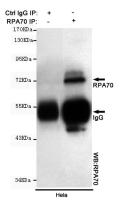
Nucleus. Nucleus, PML body. Note=Enriched in PML bodies in cells displaying alternative lengthening of their telomeres


Background

As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates, that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage (PubMed: 9430682). In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP activates the ATR kinase a master regulator of the DNA damage response (PubMed: 24332808). It is required for the recruitment of the DNA double-strand break repair factors RAD51 and RAD52 to chromatin in response to DNA damage (PubMed: 17765923). Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair (PubMed:7697716). Plays also a role in base excision repair (BER) probably through interaction with UNG (PubMed: 9765279). Through RFWD3 may activate CHEK1 and play a role in replication checkpoint control. Also recruits SMARCAL1/HARP, which is involved in replication fork restart, to sites of DNA damage. May also play a role in telomere maintenance (PubMed: 17959650). As part of the alternative replication protein A complex, aRPA, binds single-stranded DNA and probably plays a role in DNA repair. Compared to the RPA2- containing, canonical RPA complex, may not support chromosomal DNA replication and cell cycle progression through S-phase. The aRPA may not promote efficient priming by DNA polymerase alpha but could support DNA synthesis by polymerase delta in presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange (PubMed: 19996105).


References

Erdile L.F.,et al.J. Biol. Chem. 266:12090-12098(1991).
Erdile L.F.,et al.J. Biol. Chem. 268:2268-2268(1993).
Ota T.,et al.Nat. Genet. 36:40-45(2004).
Totoki Y.,et al.Submitted (MAR-2005) to the EMBL/GenBank/DDBJ databases.
Mural R.J.,et al.Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.


Images

Western blot detection of RPA70 in Hela,A431,MCF7,COS7,HT1080 and K562 cell lysates using RPA70 mouse mAb (1:1000 diluted).Predicted band size:70KDa.Observed band size:70KDa.

Immunocytochemistry staining of HeLa cells fixed in 1% Paraformaldehyde and using RPA70 mouse mAb (dilution 1:100).

Immunoprecipitation analysis of Hela cell lysates using RPA70 mouse mAb.

Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.