

LGALS4 Antibody (N-term)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP12391a

Product Information

Application WB, FC, E **Primary Accession** P56470 Other Accession NP 006140.1 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit IgG **Clone Names** RB31354 Calculated MW 35941 70-98 **Antigen Region**

Additional Information

Gene ID 3960

Other Names Galectin-4, Gal-4, Antigen NY-CO-27, L-36 lactose-binding protein, L36LBP,

Lactose-binding lectin 4, LGALS4

Target/Specificity This LGALS4 antibody is generated from rabbits immunized with a KLH

conjugated synthetic peptide between 70-98 amino acids from the N-terminal

region of human LGALS4.

Dilution WB~~1:1000 FC~~1:10~50 E~~Use at an assay dependent concentration.

Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide.

This antibody is purified through a protein A column, followed by peptide

affinity purification.

Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store

at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions LGALS4 Antibody (N-term) is for research use only and not for use in

diagnostic or therapeutic procedures.

Protein Information

Name LGALS4

Function Galectin that binds lactose and a related range of sugars. May be involved in

the assembly of adherens junctions.

Background

The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. The expression of this gene is restricted to small intestine, colon, and rectum, and it is underexpressed in colorectal cancer.

References

Zimbardi, A.L., et al. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 (PT 5), 542-545 (2010): Stechly, L., et al. Traffic 10(4):438-450(2009)

Tripodi, D., et al. BMC Med Genomics 2, 65 (2009):

Oberg, C.T., et al. Bioorg. Med. Chem. Lett. 18(13):3691-3694(2008)

Ideo, H., et al. J. Biol. Chem. 282(29):21081-21089(2007)

Images

Anti-LGALS4 Antibody (N-term) at 1:1000 dilution + HT-29 whole cell lysate Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution. Predicted band size : 36 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

LGALS4 Antibody (N-term) (Cat. #AP12391a) western blot analysis in Jurkat cell line lysates (35ug/lane). This demonstrates the LGALS4 antibody detected the LGALS4 protein (arrow).

LGALS4 Antibody (N-term) (Cat. #AP12391a) flow cytometric analysis of Jurkat cells (right histogram) compared to a negative control cell (left histogram).FITC-conjugated donkey-anti-rabbit secondary antibodies were used for the analysis.

Citations

• Identification of hub genes and pathways associated with bladder cancer based on co-expression network analy	<u>sis.</u>
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.	
Flease note. All products are FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAFEUTIC PROCEDURES.	