

NET1 antibody - N-terminal region

Rabbit Polyclonal Antibody Catalog # AI13372

Product Information

Application WB Primary Accession Q5SQI7

Other Accession NM 005863, NP 005854

ReactivityHuman, Mouse, Rat, Rabbit, Pig, Dog, Guinea Pig, Horse, Bovine **Predicted**Human, Mouse, Rat, Rabbit, Dog, Guinea Pig, Horse, Bovine

Host Rabbit
Clonality Polyclonal
Calculated MW 62 KDa

Additional Information

Alias Symbol ARHGEF8, NET1A

Format Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium

azide and 2% sucrose.

Reconstitution & Storage Add 50 ul of distilled water. Final anti-NET1 antibody concentration is 1 mg/ml

in PBS buffer with 2% sucrose. For longer periods of storage, store at 20°C.

Avoid repeat freeze-thaw cycles.

Precautions NET1 antibody - N-terminal region is for research use only and not for use in

diagnostic or therapeutic procedures.

Protein Information

22 kDa_

Images

WB Suggested Anti-NET1 Antibody Titration: 0.2-1 μg/ml

ELISA Titer: 1:62500

Positive Control: 293T cell lysate

NET1 is strongly supported by BioGPS gene expression

data to be expressed in Human HEK293T cells

Citations

 The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos b promoting maternal β-catenin activation.
Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.